Preventing Fairness Gerrymandering in Machine Learning

Michael Kearns*, Seth Neel*, Aaron Roth*, Steven Wu^

* University of Pennsylvania
^ Microsoft Research NYC

Warren Center Meet and Greet
February 20, 2018
Fairness in ML/Stats

- Identify the groups/attributes you want to protect: e.g. race, gender, age...
- Choose a (statistical) measure of equality or fairness
 - statistical parity (approx. equal loan rates across groups, ignoring creditworthiness)
 - equality of false positive/negative rates (accounts for merit)
 - calibration (estimate 30% repayment \rightarrow actual 30% repayment)
- Try to design models minimizing error subject to (approximate) fairness
- *No promises made to individuals or finer-grained groups*
"Fairness Gerrymandering": The Cartoon

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cartoon uses a gender and color matrix to illustrate the concept of fairness in gerrymandering.
“Fairness Gerrymandering”: The Reality

- Communities and Crime dataset:
 - census and other data on 2K U.S. communities
 - target prediction: high vs. low violent crime rate
 - 122 features total; 18 protected (racial group pct, incomes, police)
 - fairness notion is false positive
- Ran standard ML algo constrained by fairness wrt 18 features separately
- Quickly finds accurate classifier with less than 0.03 FP disparity
- But “Auditor” finds subgroup of weight 0.67 with FP disparity 0.26
- May be exponentially/infinitely many potentially discriminated subgroups
“Fairness Gerrymandering”: The Solution

- Designing subgroup-fair learning algorithms:
 - formulate as a 2-player, repeated, zero-sum game
 - Learner has pure strategy space H of hypotheses
 - Auditor has pure strategy space G of subgroups
 - Learner objective: minimize error subject to (approximate) fairness wrt G

- Theorem (Informal): Provably (and rapidly) convergent learning algorithm for H that is fair wrt all subgroups in G.
“Fairness Gerrymandering”: The Experiments

- Communities and Crime dataset
- Both H (d = 122) and G (d = 18) are linear threshold functions
- One free parameter C, bound on Auditor’s (dual player) variables